Corrigendum: Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 Channels
نویسندگان
چکیده
TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly.
منابع مشابه
TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: Co-localization at z-discs, costameres and intercalated discs
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and diso...
متن کاملControl of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines
The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively ...
متن کاملDomains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels.
Small conductance Ca(2+)-activated potassium channels (SK channels) are coassembled complexes of pore-forming SK alpha subunits and calmodulin. We proposed a model for channel activation in which Ca2+ binding to calmodulin induces conformational rearrangements in calmodulin and the alpha subunits that result in channel gating. We now report fluorescence measurements that indicate conformational...
متن کاملCalmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels
Elevated intracellular Ca2+ triggers inactivation of L-type calcium channels, providing negative Ca2+ feedback in many cells. Ca2+ binding to the main alpha1c channel subunit has been widely proposed to initiate such Ca2+ -dependent inactivation. Here, we find that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2+ -dependent inactivation in a "dominant-negative" manner. ...
متن کاملDifferential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells.
P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Ro...
متن کامل